We're excited to unveil our Smart Polygon system in Flux! This powerful capability builds on top of our automatic copper fills to transform how you create and manage custom copper areas in your PCB designs.
Smart Polygons in Flux behave intuitively like traces, making them straightforward to learn and use—start directly from any pad with automatic net association, simply click to place and adjust points, and watch as copper intelligently reflows in real-time. Let’s dive in!
What Are Polygons and Why Do They Matter?
In PCB design, polygons are customizable copper shapes directly tied to a specific net. They’re crucial because they significantly influence the electrical performance and reliability of your PCB. Polygons allow you to optimize your board layout for specific electrical properties, including improved grounding, controlled impedance, and efficient heat distribution.
Specifically, polygons are indispensable for:
Ground and Power Planes: Ensure stable and reliable power distribution, reducing electrical noise and voltage fluctuations.
High Current Management: Create wide copper paths to efficiently carry higher currents, reducing resistance and heat.
RF and Antenna Design:Precisely shape copper areas to meet specific RF performance criteria, critical in high-frequency applications.
Thermal Management: Improve heat dissipation by strategically placing copper to draw heat away from sensitive components.
Signal Integrity: Minimize electromagnetic interference (EMI) and cross-talk by carefully shaping and placing copper planes.
{{polygons-examples}}
Unlike zones—which define areas where copper cannot exist—polygons actively conduct electricity and shape your board's electrical performance, making them fundamental for advanced PCB designs.
Flux's Approach: Polygons Made Easy
At Flux, we prioritize intuitive, user-friendly workflows. Automatic copper fills were the first step. Now with polygons, we've continued this approach:
Easy Start: Begin directly from any pad—Flux automatically associates the polygon with the correct net.
Simple Drawing: Just click to place points and easily adjust your shapes afterward. No complicated setup required.
Automatic Copper Flow: Flux intelligently reflows copper in real-time, automatically handling object avoidance, ensuring clearances, and connectivity.
Polygons in Flux behave intuitively like traces, making them straightforward to learn and use, right from the start.
Powerful Capabilities, Accessible to Everyone
Polygons in Flux pack powerful functionality without complexity:
Multi-layer Polygons: Easily extend your copper shapes across multiple layers with automatic via stitching, simplifying complex designs.
Smart Editing: Quickly edit polygons—drag points to reshape, double-click to add or remove points—keeping your workflow smooth and fast.
Automatic Island Removal: Flux automatically removes disconnected copper "islands," ensuring your polygon remains clean and electrically connected.
Use Cases (With Examples)
Polygons unlock new possibilities in your PCB designs. Here are a few practical ways you'll benefit:
Smart Espresso Brewer: Optimize thermal and power management in consumer electronics with custom polygon shapes, ensuring reliability and consistent performance.
RF Antenna Filter: For RF antenna design, use polygons to minimize impedance mismatches and optimize current flow across transmission lines and radiating structures.
Electronic Speed Controller: For electronic speed controller design, use polygons to create low-impedance power paths that reduce voltage drops and improve current delivery to the motor.
ESP32 4 Ways Power Meter: When switching 220V loads with a 5V control signal using relays, use polygons to create wide, low-resistance traces that safely handle high current loads on the relay’s switched side.
RPi Pico Stepper Motor Driver: For stepper motor driver circuits, use polygons to improve thermal dissipation from the driver ICs and MOSFETs, enhancing reliability and performance under load.
12V to 5V Buck Converter: Use polygons to efficiently handle higher current paths, improving power distribution and thermal management.
Polygons for Designers of All Levels
Whether you're just dipping your toes into PCB design or you’re a veteran engineer tackling complex layouts, polygons in Flux offer the ideal balance of simplicity and capability:
Beginner-Friendly: Instantly intuitive—just click and draw. See immediate results as copper pours automatically.
Professional-Grade Control: Create sophisticated split planes, RF elements, and high-current copper shapes effortlessly, without losing precision or capability.
Try Polygons Today
Polygons are available now in Flux, ready to enhance your PCB design capabilities. Explore this powerful feature today and experience firsthand how advanced design can truly be this easy.
Dive in now and check out our detailed polygon documentation or jump straight into Flux to try it yourself. We can't wait to hear what you think!
Smart Polygons in Flux behave intuitively like traces, making them straightforward to learn and use—start directly from any pad with automatic net association, simply click to place and adjust points, and watch as copper intelligently reflows in real-time. Let’s dive in!
What Are Polygons and Why Do They Matter?
In PCB design, polygons are customizable copper shapes directly tied to a specific net. They’re crucial because they significantly influence the electrical performance and reliability of your PCB. Polygons allow you to optimize your board layout for specific electrical properties, including improved grounding, controlled impedance, and efficient heat distribution.
Specifically, polygons are indispensable for:
Ground and Power Planes: Ensure stable and reliable power distribution, reducing electrical noise and voltage fluctuations.
High Current Management: Create wide copper paths to efficiently carry higher currents, reducing resistance and heat.
RF and Antenna Design:Precisely shape copper areas to meet specific RF performance criteria, critical in high-frequency applications.
Thermal Management: Improve heat dissipation by strategically placing copper to draw heat away from sensitive components.
Signal Integrity: Minimize electromagnetic interference (EMI) and cross-talk by carefully shaping and placing copper planes.
{{polygons-examples}}
Unlike zones—which define areas where copper cannot exist—polygons actively conduct electricity and shape your board's electrical performance, making them fundamental for advanced PCB designs.
Flux's Approach: Polygons Made Easy
At Flux, we prioritize intuitive, user-friendly workflows. Automatic copper fills were the first step. Now with polygons, we've continued this approach:
Easy Start: Begin directly from any pad—Flux automatically associates the polygon with the correct net.
Simple Drawing: Just click to place points and easily adjust your shapes afterward. No complicated setup required.
Automatic Copper Flow: Flux intelligently reflows copper in real-time, automatically handling object avoidance, ensuring clearances, and connectivity.
Polygons in Flux behave intuitively like traces, making them straightforward to learn and use, right from the start.
Powerful Capabilities, Accessible to Everyone
Polygons in Flux pack powerful functionality without complexity:
Multi-layer Polygons: Easily extend your copper shapes across multiple layers with automatic via stitching, simplifying complex designs.
Smart Editing: Quickly edit polygons—drag points to reshape, double-click to add or remove points—keeping your workflow smooth and fast.
Automatic Island Removal: Flux automatically removes disconnected copper "islands," ensuring your polygon remains clean and electrically connected.
Use Cases (With Examples)
Polygons unlock new possibilities in your PCB designs. Here are a few practical ways you'll benefit:
Smart Espresso Brewer: Optimize thermal and power management in consumer electronics with custom polygon shapes, ensuring reliability and consistent performance.
RF Antenna Filter: For RF antenna design, use polygons to minimize impedance mismatches and optimize current flow across transmission lines and radiating structures.
Electronic Speed Controller: For electronic speed controller design, use polygons to create low-impedance power paths that reduce voltage drops and improve current delivery to the motor.
ESP32 4 Ways Power Meter: When switching 220V loads with a 5V control signal using relays, use polygons to create wide, low-resistance traces that safely handle high current loads on the relay’s switched side.
RPi Pico Stepper Motor Driver: For stepper motor driver circuits, use polygons to improve thermal dissipation from the driver ICs and MOSFETs, enhancing reliability and performance under load.
12V to 5V Buck Converter: Use polygons to efficiently handle higher current paths, improving power distribution and thermal management.
Polygons for Designers of All Levels
Whether you're just dipping your toes into PCB design or you’re a veteran engineer tackling complex layouts, polygons in Flux offer the ideal balance of simplicity and capability:
Beginner-Friendly: Instantly intuitive—just click and draw. See immediate results as copper pours automatically.
Professional-Grade Control: Create sophisticated split planes, RF elements, and high-current copper shapes effortlessly, without losing precision or capability.
Try Polygons Today
Polygons are available now in Flux, ready to enhance your PCB design capabilities. Explore this powerful feature today and experience firsthand how advanced design can truly be this easy.
Dive in now and check out our detailed polygon documentation or jump straight into Flux to try it yourself. We can't wait to hear what you think!
Share
Nico Tzovanis
Nico is a professional electronics and PCB design engineer at Flux. Find him on Flux @nico
Go 10x faster from idea to PCB
Work with Flux like an engineering intern—automating the grunt work, learning your standards, explaining its decisions, and checking in for feedback at key moments.
With Flux, enterprises can take their architectural ideas and use AI to transform those ideas into actionable items. With Copilot, your enterprise can generate schematics, perform AI design reviews, and even identify PCB technology, budgets, and timelines well in advance of any manufacturing.
In this post, we’ll explore why these concepts matter, how they impact signal integrity and power distribution, and what to keep in mind as you design. If you want to go deeper into implementation details—like when to use zones, where to place stitching vias, or how to avoid stack-up pitfalls—we’ve created a detailed PDF guide just for that.
ESP32 microcontrollers are affordable, low-power SoCs with integrated Wi-Fi and Bluetooth. Offering dual-core processing, ample memory, and versatility, they excel in IoT, wearables, and smart home applications. The ESP32's continuous evolution promises exciting possibilities ahead.
Streamline component research with Flux Copilot. Copilot links to components for quick part research, offering multiple options tailored to your needs, and find part alternatives effortlessly without switching between tabs and platforms.
Whether you’re routing high-speed buses, fine-tuning antennas, or laying out clean RF filters, sharp 90º or even 45º angles can be a serious bottleneck. Now, you can create precisely curved elbows across entire nets—or dial them in trace by trace—with full control over radius, inheritance, and overrides.
One of the key components of PCBs are vias, which are tiny pathways that allow electrical signals to travel from one layer of the board to another. Vias are a staple of PCB design.
In this post, we’ll show you exactly how to unlock the power of Flux Copilot for yourself: from writing rock-solid triggers to scoping entries at the project, user, and system levels.
Practical guide to writing prompts that get quality results from Flux. We’ll talk about the anatomy of a good prompt and how you can use different LLMs to come up with a great prompt.
Today, we’re taking collaboration one step further by giving hardware teams a shared virtual space that’s built for innovation. Today, we’re launching Flux for Organizations: a new way for hardware teams to collaborate.
The Raspberry Pi Zero 2 W is a small and powerful computer with impressive performance for its size and price. With a quad-core processor, 512MB of RAM, built-in wireless connectivity, and a USB On-The-Go port, it's suitable for many projects, including home automation, media centers, and robotics.
Oscillators are electronic circuits producing oscillating signals without an input. Types include sine, square, sawtooth, triangular, and pulse wave oscillators. Crystal oscillators use vibrating crystals for precise frequencies, crucial in clocks and radios. RF oscillators operate at radio frequencies, essential in broadcasting and telecoms.
Looking for a comprehensive guide to ESP8266 pinout? Check out our article that covers everything you need to know about the ESP8266's pins, including digital, analog, and PWM pins. Perfect for beginners and experts alike, our guide will help you understand the ESP8266's pinout and how to use it in your projects.